Pressure evolution in the shear layer of forming vortex rings
نویسندگان
چکیده
This study investigated the relationship between the pinch-off of axisymmetric vortex rings and the evolution of pressure in the shear layer being entrained into the vortex rings. A piston-cylinder apparatus was used to generate the vortex rings, and five cases of constant piston acceleration over distances ranging from zero (impulsive start) to eight piston diameters were investigated. It was determined that increasing the distance over which the piston accelerated increased the dimensionless formation time at which the vortex ring pinches off, consistent with previous observations. A limiting value of vortex ring formation number of approximately seven is approached when the piston is accelerated over more than six piston diameters. For each case, the evolution of pressure in the shear layer was calculated based on PIV measurements of the velocity field and spatial integration of the corresponding pressure gradients using a recently developed algorithm. Plots of the shear layer pressure in X-T diagrams aided in identifying key features of the pressure associated with the evolution of vortex rings, including a high-pressure region that forms behind the leading ring. By extrapolating the motion of this high-pressure region back to the nozzle exit plane in the X-T diagram, its time of first appearance can be estimated. It is found that the appearance of the extrapolated local pressure maximum in the shear layer at the nozzle exit plane coincides with vortex ring pinch-off, as conventionally quantified by the vortex ring formation number.
منابع مشابه
Acoustic-Mean Flow Interaction in Solid Propellant Rocket Motors
There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change ...
متن کاملAcoustic-Mean Flow Interaction in Solid Propellant Rocket Motors
There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change ...
متن کاملNumerical Study on Mechanism of Multiple Ring Formation
In this paper, the mechanism of momentum deficit formation about the vortex legs is deeply studied. A new mechanism on how the multiple rings are formed one by one is presented. It is found that the momentum deficit is generated by vortex ring leg ejection. The momentum deficit forms shear layers above the vortex legs. The shear layers finally form new vortex rings one by one.
متن کاملNumerical Investigation of Vortex Interaction in Pipe Flow
To discover the nonlinear characteristics of pipe flow, we simulated the flow as a sum of many vortex rings. As a first step, we investigated the nonlinear interaction among a maximum of three vortex rings. The pipe wall was replaced by many bound vortices. A free vortex ring moves right or left according to the radius, and that of a particular radius keeps the initial position. The energy of a...
متن کاملDNS Study on the Evolution of Vortical Packets and Their Interactions in Boundary Layer
Vortical structures like the Λ-vortex and ring-like vortex play a critical role in the boundary layer transition process. In this paper, the mechanisms of the formation of the vortical packets and their mutual interactions are studied by DNS. It is found that the shear layer instability is the key of the vortex generation. On the other hand, in the process of evolution of vortical packets, the ...
متن کامل